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Spreading of a smectic A liquid crystal on a rotating disc 

by P. OSWALD 
Ecole Normale Superieure de Lyon, Laboratoire de Physique, 

46 AllQ d’Italie, 69364 Lyon Cedex 07, France 

(Received 8 April 1991; accepted 15 June 1991) 

We describe the dynamics of spreading of a smectic A liquid crystal deposited on 
a rotating disc. We show the existence of several regimes according to the film 
thickness. If it is thick enough, the thinning is controlled by bulk permeation; at 
intermediate thicknesses the surface dissipation dominates, whereas viscous effects 
begin to be felt only at very small thickness. 

1. Introduction 
If a drop of an isotropic liquid is deposited on to a rotating disc, it spreads rapidly 

due to the centrifugal force. The experiment shows that the thickness, h, of the liquid 
film becomes quickly homogeneous in its central part and decreases asymptotically as 
t-”’ where t is time [l, 21. This property is used by manufacturers in order to make 
homogeneous deposits of known thickness. The question is: does a smectic A liquid 
crystal behave in the same way? 

We recall that a smectic A phase is a lamellar liquid crystal where the molecules are 
arranged in fluid layers which can glide viscously over each other. One of their essential 
hydrodynamic characteristics is that they behave like an ordinary viscous liquid when 
the barycentric velocity v. of the molecules is parallel to the layers, and like a porous 
medium when v is perpendicular to the layers. In this case, the liquid crystal plays both 
the role of the fluid and of the porous medium: it is often said that there is permeation, a 
concept that was first introduced by Helfrich in 1969 [3]. Such a flow has been observed 
experimentally by studying the dynamics of the collapse of a smectic bubble [4]. This 
experiment is very delicate to perform and does not allow the permeation coefficient to 
be measured accurately. Here, we propose a new method for measuring this transport 
coefficient (both in the bulk and on the surface), which is much easier to perform than 
the previous method. 

2. Summary of the hydrodynamic equations for a smectic A liquid crystal 
The flow geometry is pictured in the figure. A smectic A film, of initial thickness h,, 

is deposited on to a disc of radius R which is rotating around its axis of revolution with 
an angular velocity o. The disc is treated in homeotropic anchoring, the layers 
remaining parallel to the substratum during spreading. 

The stationary equations of motion in the rotating frame, can be obtained by 
adding to the balance of the forces, the centrifugal and the Coriolis forces. We shall 
neglect the Coriolis force, an assumption that is justified if o is much smaller than 
p/ph2, where h is the film thickness at time t, p a typical viscosity coefficient and p is the 
density that we assume to be constant. In cylindrical coordinates ( r , Q  the bulk 

0267-8292/91 $3.00 0 1991 Taylor & Francis Ltd. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
0
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



710 P. Oswald 

Z 

I 

I 

Smectic film on a rotating disc. The smectic layers are parallel to the surface of the disc 
(homeotropic anchoring), a condition easy to fulfil by coating the surface with a polymer 
(silane for instance). 

equations simplify if it is assumed that the five viscosity coefficients are equal and that 
the convective terms are negligible (Reynolds number much smaller than 1) [5]  

aP v, 
aZ -,I,,’ --- 

We have also neglected the viscous term in the second equation, which supposes that 
the film thickness is larger than the permeation length I ,  = (p,I,,)l’z, which is of the order 
of a layer thickness [ 5 ] ;  A,, is the bulk permeation coefficient. These two conditions are 
not very restrictive and almost always satisfied. The boundary conditions on the free 
surface read: 

av, avr 
n:r = , u ( ~  + i”) = 0 at z = h, ( 5 )  

while, on the surface of the glass, the layer displacement u and the velocity both vanish. 
The elastic stress D is associated with the displacement u and [ is a surface permeation 
coefficient that describes how the layers disappear at the free surface. Finally we must 
check that the pressure P vanishes on the side surface perpendicular to the layers, 
namely 

P = O  at r = R .  (7) 
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3. Search for an approximate solution 
In this section, we shall content ourselves with describing the thinning of the film 

only in its central part (I<< R). By analogy with the solution that is known for ordinary 
viscous fluids, we look for a velocity and a hydrostatic pressure field of the form 

u, = - Cz2r + Drz, (8) 

Z L  
U, = 2C- - Dz', 

3 (9) 

E 
P = - ( r 2 - R 2 ) + f ( z ) ,  2 (10) 

where C,  D and E are three constants to be determined as well as the function f ( z ) .  It is 
easy to verify that this particular choice allows us to satisfy exactly the bulk equations 
(1H3) as well as the boundary conditions at the free surface z = h (equations (4H6)) and 
on the plate at z = 0. By contrast, it is impossible to cancel exactly the pressure on the 
side surface with this type of solution. A reasonable assumption consists in fulfilling this 
condition on average on this boundary ( ( P )  = O  at r =  R), which imposes 

I l f ( z )  dz = 0. 

In order to calculate the constants C, D and E,  it is sufficient to replace u, and u, by their 
expressions (8) and (9) in the equations of motion. Substituting into equation (1) for u, 
yields 

E =  - 2 C p + p o 2 ,  (12) 

D = 2Ch. (13) 

while condition ( 5 )  on the vanishing of the shear stress at the free surface gives 

From equation (2) for u, and condition (11) we obtain 

One more relation is obtained by writing that u, = I P  on the horizontal free surface at 
z = h  

Relations (12) and (15) allow us to calculate the constant C 

which is directly related to the evolution law of the film thickness 

dh 
dt 
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This equation can be integrated immediately and gives 

1 (gh, + :Ah) - h' 1 = 4p02 T( to - t ) .  

R21i 30 

At time t = 0, the film thickness is equal to h,, which fixes the integration constant to. We 
see from this equation that there are several regimes of thinning according to the film 
thickness as well as three typical lengths 

The first two lengths depend on the sample size. The third A is a length that depends 
only on the material chosen. This length is related to the structure of the smectic-air 
interface and depends only on the experimental conditions. For the time being, we shall 
consider it to be constant, an assumption that we shall discuss in the last section. 
According to the order of magnitude of each of these lengths, several spreading regimes 
can be considered. 

4. Different spreading regimes 
Two distinct situations must be considered according to whether A is greater or 

(1) If A > h,, three regimes occur successively: 
(a) at large thickness, h > A, the thinning kinetics are dominated by the bulk 

permeation. In this regime, h decreases as Rolp(to - t)'12; 
(b) at intermediate thicknesses, h ,  < h <A, the surface permeation dominates. 

The film thickness decreases linearly versus time as oZR2C(to - t); 
(c )  at small thickness, k h , ,  the viscosity dominates and the thickness 

decreases as w -  ' t - ' f z .  We find again the same behaviour as in an ordinary 
fluid. 

(2) If A < h,, the regime of surface permeation is screened by the other two. In this 
case, the bulk permeation dominates as long as h > h,, whereas the viscosity 
becomes preponderant when h < h,. 

Let us emphasize that, at large thickness, the film dynamics are always dominated 
by the bulk permeation. We have, therefore, a convenient way to measure the bulk 
permeation coefficient I,. 

smaller than h,. 

5. Calculation of A 
The length A and the associated surface permeation coefficient [ depend on the 

structure of the smectic-air interface. If the interface is rough, A is of the order of a 
molecular length. In this case, h, >>A, and we are in the second case that we have just 
described in the previous section. If the interface is faceted, which is the case 
experimentally for most of the materials [6] ,  A is linked to the mean distance A between 
two steps on the free surface [4]. Indeed we have 
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where u is the step velocity and m its mobility; we then find 

If the mobility is close to that of a bulk dislocation, namely r n ~ ( ; l , / p f ~ / ~  [7], then 
A =  A,/[= (l,/b)A x A and A can be identified with the mean distance between steps. 

Let us now suppose that there exist a few screw dislocations emerging at the free 
surface. Experiments of microplasticity have proven that these dislocations exist [S]. 
From the emergence point of each dislocation starts a microscopic step of height equal 
to the layer thickness b. In rotation, the stress 0 exerts a force a b  on this step which 
consequently deforms. This force is analogous to the supersaturation force that acts on 
a step on crystal growth. It is known that, in a stationary regime, the step takes the form 
of a spiral whose geometrical characteristics have been calculated by Burton et al. [9]. 
In this model, A can be identified with the distance between two turns of the spiral. A 
complete calculation of the shape of the spiral shows that we must take in this case: 

B 
N 20- 

0.63 a b  a b  
A%--% 471 B 

independently of the number of spirals per unit area. p is the line tension of a step. Thus, 
we see that the distance A is not independent of the velocity but depends on it via a. 

In order to conclude, let us make a few numerical estimates. We know that 
Bx10-6dyn[6],bz3 x 10-7cm.Furthermore,lalxpR202/2,bytakingp= l g ~ m - ~ ,  
R =  1 cm and o= 1OOs-'xl000rpm, la lx500Odyn~rn-~.  We then calculate 
A x A x 100 pm. On the other hand, we calculate h, x 3 pm and h2 x 1 pm by taking 
1, x lo-' cm. We are then in case (1) discussed in 9 4. We conclude, therefore, that, if the 
thickness ranges between 3 and 100pm (h,<h<A), then the surface dissipation 
dominates and the thickness decreases linearly in time according to the following 
spreading law 

p o 2 R 2  mp2b204R4 
(to-t)x lOOOm(t,-t), 

SOB 
h/pm = ~ at0 - t) = 2 

where time is expressed in seconds. If we assume that the step mobility is of the same 
orderofmagnitudeas that ofanedgedislocation, that is tosaymz 10-6cm3 dyn-l s - l  
[$I, we find that the thinning velocity is close to 3.6pm/h for a velocity o= lOOs-'. 
This velocity should be easily measurable experimentally. Its large dependence (in w4) 
on the rotation velocity should also constitute an excellent experimental test of the 
proposed mechanism. 

I would like to thank L. Lejcek for discussions. This work was supported by the 
Centre National de la Recherche Scientifique, the Centre National #Etudes Spatiales 
and the Rtgion Rh8ne-Alpes. 
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